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Abstract
Trajectory-based approaches to quantum mechanics include the de Broglie–
Bohm interpretation and Nelson’s stochastic interpretation. It is shown that
the usual route to establishing the validity of such interpretations, via a
decomposition of the Schrödinger equation into a continuity equation and a
modified Hamilton–Jacobi equation, fails for some quantum states. A very
simple example is provided by a quantum particle in a box, described by a
wavefunction that is initially uniform over the interior of the box. For this
example, there is no corresponding continuity or modified Hamilton–Jacobi
equation, and the space-time dependence of the wavefunction has a known
fractal structure. Examples with finite average energies are also constructed.

PACS number: 03.65.Ta

1. Introduction

The formalism of standard quantum mechanics is very different from that of classical
mechanics, as are the generic phenomena described by each theory. This gives rise to a
number of well-known interpretational issues when one tries to integrate classical and quantum
aspects of the world. The Copenhagen interpretation of quantum mechanics remains foremost
for most physicists in resolving such issues, and adequately explains the empirical content of
the standard formalism. However, a number of alternative interpretations exist, and can be
valuable in providing (i) reasonably coherent pictures for thinking about fundamental quantum
phenomena such as interference and entanglement; (ii) means for marrying the microscopic
with the macroscopic (in contrast to the enforced separation specified by the Copenhagen
interpretation); and (iii) a variety of starting points for extending or modifying the standard
quantum formalism.

One class of alternative interpretations is distinguished by retaining the classical concept
of space-time trajectories for quantum particles. Thus, for example, in the de Broglie–Bohm
interpretation particles follow trajectories in configuration space determined by a guiding wave,
providing an underlying deterministic (but nonlocal) picture of quantum evolution [1, 2].
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A second example is Nelson’s stochastic interpretation, in which particles follow non-
differentiable trajectories in configuration space determined by a stochastic generalization
of Newton’s second law [3, 4].

An important claim made by proponents of such trajectory-based interpretations is that they
reproduce all predictions of standard quantum mechanics, at least for the case of nonrelativistic
particles moving under velocity-independent potentials [1–4]. This general reproducibility
is a necessary feature of any complete interpretation of the quantum formalism. Indeed,
the de Broglie–Bohm and stochastic interpretations appear capable of going beyond the
standard formalism, as they have even been applied to non-normalizable wavefunctions lying
outside the Hilbert space of possible quantum states (e.g., sections 4.10, 4.11 of [2], and
p 88 of [4]).

However, the aim of this note is to show that such trajectory-based interpretations, in fact,
do not apply to all quantum states and, hence, are formally incomplete. Moreover, since some
of the states in question have finite average energies, it is suggested that such interpretations
may also be physically incomplete. Similar difficulties arise for any interpretation based on
continuity and modified Hamilton–Jacobi equations, including the hydrodynamic and exact
uncertainty approaches to quantum mechanics [2, 5, 6].

The results are based on a subtle property of the Schrödinger equation in the position
representation, discussed in section 2. In particular, for certain states of quantum particles, this
equation cannot be partitioned into separate terms involving spatial and temporal derivatives
of the wavefunction, respectively. A simple example is provided by a wavefunction initially
uniform over the interior of some region and vanishing elsewhere (e.g., a plane wave incident
on a slit, or a particle confined to a box with maximal position entropy).

The existence of such states formally arises as a consequence of the unboundedness of the
corresponding Hamiltonian operator—this operator cannot in fact be directly applied to a large
class of wavefunctions, even though, paradoxically, these wavefunctions and their evolution
are themselves perfectly well defined. Furthermore, as shown in section 3, such wavefunctions
can have finite average energies, and hence can, in principle, be physically prepared from finite
resources.

An important consequence of unboundedness is that the Schrödinger equation cannot
always be decomposed into a continuity equation and a modified Hamilton–Jacobi equation.
As discussed in section 4, the nonexistence of such a decomposition for certain states leads to
an incompleteness of trajectory-based interpretations for these states.

The lack of continuity and modified Hamilton–Jacobi equations, for the particular case
of a particle in a box described by an initially uniform wavefunction, is connected with the
known fractal structure of this wavefunction in almost all spatial and temporal directions [7]. In
section 5 it is conjectured that, more generally, the nonexistence of these equations corresponds
to either the wavefunction or its spatial derivative having a fractal structure (where the latter
case corresponds to examples having finite average energies).

Conclusions are given in section 6.

2. A subtlety of the Schrödinger equation

Attention will primarily be restricted to quantum systems comprising a single nonrelativistic
spin-zero particle. The corresponding Hilbert space is then given by the set of square-integrable
complex functions on the configuration space of the particle. It is typically assumed, in what
follows, that the configuration space is one-dimensional (results can easily be generalized to
higher dimensions).
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Consider first a system that has a Hamiltonian operator Ĥ with a discrete spectrum {En},
and corresponding normalized eigenfunctions {ψn(x)} satisfying

Ĥψn = Enψn,
∫

dx ψ∗
m(x)ψn(x) = δmn. (1)

A general state of the system at any time t is then specified by

ψ(x, t) =
∑

n

cne−iEnt/h̄ψn(x) = e−iĤt/h̄ψ(x, 0), (2)

where the coefficients cn are any set of complex numbers satisfying the normalization condition

∑
n

|cn|2 = 1. (3)

It follows immediately from equations (1) and (2) that one has the identity

[Ĥ − ih̄(∂/∂t)]ψ(x, t) = 0 (4)

for all states of the system (in particular, one may apply the operator in square brackets to
each term of the summation to obtain the result). This equation is, of course, the Schrödinger
equation for the system. However, one cannot in general rewrite equation (4) in the more
familiar form

ih̄(∂/∂t)ψ(x, t) = Ĥψ(x, t). (5)

It is this somewhat subtle point, the inequivalence of equations (4) and (5) for certain states,
that underlies the main results of this paper.

As a simple example, consider the case of a particle of mass m confined to a one-
dimensional box. If the particle is confined to the interval [0, L], with Ĥ = −h̄2/(2m)(d/dx)2

and the usual (Dirichlet) boundary conditions ψ(x, t) = 0 at x = 0 and x = L, then the energy
eigenfunctions and eigenvalues are well known to be given by

ψn(x) = (2/L)1/2 sin nπx/L, En = (nπh̄)2/(2mL2), n = 1, 2, 3, . . . . (6)

For the particular case where the wavefunction is initially uniform over the interior of the box,
one then has

cn =
∫ L

0
dx ψ∗

n(x)ψ(x, 0) = 2
√

2

πn
, n = 1, 3, 5, . . . , (7)

with cn = 0 for n = 2, 4, 6, . . . . Hence, at time t = 0,

Ĥψ(x, 0) =
∑

n

cnEnψn(x) = 2πh̄2

mL5/2

∞∑
k=0

(2k + 1) sin
(2k + 1)πx

L
,

which diverges for all x ∈ (0, L). Thus, equation (5) is meaningless for this example: the
operator Ĥ acts not only to kick the wavefunction out of the Hilbert space, but to knock it right
out of the set of functions altogether.

An analogous example of the inequivalence of equations (4) and (5), for the case of a
continuous energy spectrum, is provided by a one-dimensional free particle of mass m initially
confined to some interval, i.e., with Hamiltonian operator Ĥ = −h̄2(d/dx)2/(2m) and initial
wavefunction

ψ(x, 0) = L−1/2eip0x/h̄, −L/2 < x < L/2 (8)
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(corresponding, for example, to a plane wave incident on a one-dimensional slit). It follows
that the wavefunction at any later time has the Fourier decomposition

ψ(x, t) =
(

2h̄

πL

)1/2 ∫
dp

sin(p − p0)L/2h̄

p − p0
eipx/h̄−ip2t/(2h̄m),

and hence that Ĥψ(x, t) is not well-defined (in particular, the Fourier integrand of this quantity
scales as |p| for large |p|).

Thus, for some states, equations (4) and (5) are not equivalent—indeed, the latter equation
has no meaning for these states. It is this fact that lies behind the incompleteness of trajectory-
based interpretations, as will be seen in section 4. First, however, this subtlety of the
Schrödinger equation will be investigated a little further, in the following section.

Finally, it is of interest to note that the above examples of inequivalence arise with respect
to the position representation of the quantum state, which is of course the representation
having fundamental physical significance in trajectory-based interpretations. In contrast, no
analogous inequivalence arises for the Schrödinger equation in the energy and the momentum
representations, for either of the examples given above. Moreover, it may be noted from
equation (2) that, even in the position representation, the action of the unitary evolution
operator Û(t) = e−iĤt/h̄ is always well defined, even though the action of the Hamiltonian
Ĥ is not. Thus, in accord with Wigner’s theorem [8] (and forming a basic element in most
axiomatic approaches to quantum mechanics), it is unitary evolution which is fundamental to
describing evolution on Hilbert space, with the Schrödinger equation following as a secondary
consequence.

3. Energy considerations

It is not difficult to see that the average energy 〈H〉 of the above two examples is infinite.
Thus, while these examples are perfectly valid quantum states, it is difficult to conceive of any
method for their physical preparation. Any interpretation that fails to explain them therefore
suffers from a formal rather than a physical incompleteness. Hence, it is important to explore
the issue of energy requirements further and, in particular, to determine whether examples
having finite average energies exist.

It is convenient for this purpose to return to the case of a discrete energy spectrum
(similar considerations apply to the continuous case), and suppose that the amplitudes, energy
eigenvalues and eigenfunctions scale, respectively, as

|cn| ∼ n−α, En ∼ nβ, |ψn| ∼ nγ (9)

for large n, with α > 1/2 (to ensure that the state is square-integrable). For the examples in
section 2 one has α = 1, β = 2 and γ = 0.

It follows that (ignoring unimportant phase factors)

Ĥψ =
∑

n

cnEnψn ∼
∑

n

nβ−α+γ , 〈H〉 =
∑

n

|cn|2En ∼
∑

n

nβ−2α.

Hence, one can arrange for Ĥψ diverge almost everywhere, while keeping the average energy
〈H〉 finite, by choosing β − α + γ > 0 and β − 2α < −1, respectively. This is equivalent to
the condition

(1 + β)/2 < α < β + γ (10)

on α (where for consistency one requires that β >1 − 2γ). Equations (9) and (10) provide a
large parameter range corresponding to examples of particles with finite average energies for
which equation (5) is generally invalid.
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Note that the form of the Schrödinger equation in equation (5) must necessarily be valid
whenever Ĥψ happens to be a member of the Hilbert space in question (and hence is well
defined), i.e. whenever

〈H2〉 =
∫

dx |Ĥψ|2 < ∞.

Thus, all counterexamples must have an infinite expectation value for the square of the energy
of the system. It follows immediately from equations (9) that β − α < −1/2, leading
via equation (10) to the condition γ < 1/2 for the asymptotic scaling of discrete energy
eigenfunctions for any counterexample.

Finally, to give an optical example, consider a single-mode field of frequency ω in a
nonlinear Kerr medium, with photon annihilation operator â, number operator N̂ = â†â, and
Hamiltonian operator

Ĥ = h̄ωN̂ + κN̂2.

The energy eigenfunctions ψn(x), in the usual quadrature representation defined by X̂ =
(â + â†)/2, are Hermite–Gaussians, and for large photon numbers scale as n−1/4 on any finite
interval [9]. Furthermore, for this case, one has En ∼ n2. Thus β = 2 and γ = −1/4. It then
follows from equation (10) that amplitudes scaling as

|cn| ∼ n−α, 3/2 < α < 7/4, (11)

yield states with finite average energy, for which the form of the Schrödinger equation in
equation (5) is not valid. As a particular example, one may choose the initial state of the field
to have the number state expansion

|ψ0〉 := [ζ(13/4)]−1/2
∞∑

n=0

(n + 1)−13/8|n〉, (12)

corresponding to α = 13/8, where ζ(z) denotes the Riemann zeta-function and |n〉 denotes
the nth photon number eigenstate. It would be of interest to find a scheme for the physical
generation of such states.

4. Incompleteness

Given any wavefunction ψ(x, t) associated with some quantum system, one can define
quantities P(x, t) and S(x, t) via the polar decomposition

ψ = P1/2eiS/h̄ (13)

of the wavefunction. Note that P(x, t) = |ψ(x, t)|2 is the probability density associated with
finding the system at position x in configuration space, at time t.

In trajectory-based interpretations of quantum mechanics, the position of the system
is assumed to be a ‘real’ property at all times, and the probability density P(x, t) reflects
incomplete knowledge of this property (in the de Broglie–Bohm interpretation, P(x, t) also
has a more fundamental role as a ‘real’ physical degree of freedom associated with the guiding
wave ψ(x, t)). Thus quantum mechanics is interpreted as describing an ensemble of systems,
with each member of the ensemble following a specific trajectory in configuration space. Such
a combination of trajectories and statistics provides an illuminating quasi-classical picture of
quantum systems (although it should be noted that the trajectories can have rather ‘surrealistic’
properties that conflict with naive classical notions of position and its measurement [10]). The
aim of such interpretations is to explain the evolution of the ensemble as a consequence of
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the evolution of P and S. It is necessary to do this for all possible wavefunctions if such
interpretations are to provide a complete explanation of quantum systems.

Now, if one assumes that the form of the Schrödinger equation in equation (5) is valid,
then for the Hamiltonian operator Ĥ = −(h̄2/2m)∇2 + V(x), one may multiply this equation
on the left by ψ∗, and take real and imaginary parts, to obtain the corresponding equations of
motion

∂P

∂t
+ ∇ ·

(
P

∇S

m

)
= 0,

∂S

∂t
+ |∇S|2

2m
+ V − h̄2∇2P1/2

2mP1/2
= 0, (14)

for P and S. The first equation is a continuity equation, ensuring conservation of probability,
and the second equation is a modified Hamilton–Jacobi equation. Both the de Broglie–Bohm
interpretation and Nelson’s stochastic interpretation are based on these equations [1–4] and,
hence, the consistency of these interpretations with quantum mechanics follows whenever
equation (5) is valid.

However, as was demonstrated by explicit example in the previous sections, there are
perfectly well-defined quantum states for which equation (5) is not valid. For these states, one
cannot follow the above procedure to derive corresponding continuity and modified Hamilton–
Jacobi equations. It follows that interpretations relying on these equations cannot explain the
evolution of such states, and so are incomplete. This result in fact applies not only to trajectory-
based interpretations, but also to any interpretation based on equations (14), including the
hydrodynamic and exact uncertainty interpretations [2, 5, 6].

Note that there seems at first to be a possible caveat on the above incompleteness result.
One could argue in particular that such interpretations do not need a corresponding Schrödinger
equation—they only need equations (14). However, such an argument is consistent if and only
if equations (14) lead to the same predictions as the standard quantum formalism, for the
states in question. Unfortunately, this is not the case. In particular, if the continuity and
modified Hamilton–Jacobi equations are assumed to be a priori valid for such states, then the
spatial and temporal derivatives of P1/2 and eiS/h̄ must exist almost everywhere, and one can
then derive equation (5) from equations (13) and (14). This contradicts the examples of the
previous sections. It is therefore concluded that the continuity and modified Hamilton–Jacobi
equations do not correctly describe the states in question.

For the first example discussed in section 2, of a particle confined to a one-dimensional
box with the wavefunction initially uniform over the interior of the box, the incompleteness
of trajectory-based interpretations may be seen even more directly. In particular, in such
interpretations, the initial wavefunction corresponds to an ensemble of particles with initial
positions uniformly spread over the interior of the box (with no particles located at the
boundaries of the box). Thus, in the neighbourhood of every member of the ensemble, P

and S are initally constant, implying that their spatial derivatives vanish. It then follows
immediately from equations (14) that P and S must remain constant everywhere in the interior
of the box, i.e. that the ensemble is stationary. This contradicts the quantum evolution, where
the wavefunction ψ evolves according to equation (2).

The above example further provides an instance of the breakdown of the velocity equation

v = m−1∇S = (h̄/m) Im{ψ−1∇ψ}, (15)

postulated for each trajectory in the de Broglie–Bohm interpretation [1, 2], and for the average
drift velocity of the forward and backward processes in Nelson’s stochastic interpretation [3, 4].
In particular, it has been shown by Berry that the space-time dependence of the wavefunction
ψ(x, t) for this example has a fractal structure [7]. Hence, ∇ψ is not defined for almost all x

and t and, therefore, equation (15) cannot be used to define any corresponding trajectories or
processes.
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5. Fractal connections

The formal cause of the incompleteness of trajectory-based (and other) interpretations is seen
to stem from the fact that the form of the Schrödinger equation in equation (5) is not valid for
all states—each side of this equation can be strongly divergent in the position representation,
even for states with finite average energy. Here some evidence is collected suggesting that, for
quantum particles, this divergence is associated with fractal structures of the corresponding
wavefunctions.

For the example of the one-dimensional particle in a box, with a wavefunction initially
uniform over the box, Berry has shown that the probability distribution P(x, t) has fractal
dimension 3/2 in the spatial direction for almost all fixed times t, and fractal dimension 7/4 in
the time direction for almost all fixed positions x. A simplified expression for P(x, t) for this
example is given in [11], and an approximate experimental realization of the fractal structure,
via an optical analogue, is discussed in [12, 13]. Further fractal and near-fractal wavefunctions
have been constructed by Wojcik et al [9] and Amanatidis et al [14] (all having infinite average
energies in the fractal limit). For such wavefunctions, both P and S in equation (13) are
typically also fractals and, hence, provide further examples where equations (14) and (15) are
not well defined.

The fractal nature of the wavefunctions in [7, 9] was derived as a consequence of the result
that functions of the form

f(x) =
∑

n

aneinx,

for which the amplitudes an scale asympotically as

|an| ∼ |n|−z with 1/2 < z � 3/2,

are continuous but nondifferentiable, and have fractal dimension 5/2 − z [7]. Thus, for
example, for a particle in a one-dimensional box with amplitudes |cn| ∼ n−α in equation (2), it
follows via equation (6) that the wavefunction has a fractal structure whenever 1/2 < α � 3/2
(this includes the particular case of the initially uniform wavefunction, for which α = 1).
Note, however, that since 〈H〉 ∼ ∑

n n2−2α, all such examples have infinite average energies
and hence cannot be physically prepared.

It turns out that fractal structures can also be associated with states having finite average
energies. In particular, consider again states of the particle in the box with coefficients
|cn| ∼ n−α in equation (2), where α is now chosen to be in the parameter range corresponding
to equation (10) in section 3. Since β = 2 and γ = 0 for this case, this range is given by
3/2 < α < 2. Now, by construction, the corresponding states have finite average energy and
do not satisfy the form of the Schrödinger equation in equation (5). On the other hand, they
do not satisfy the fractal criterion given above. However, from equation (6) one finds that the
spatial derivative of the corresponding wavefunctions has the form

(d/dx)ψ(x, t) =
√

2πL−3/2
∑

n

ncn cos nπx/L.

This quantity does satisfy the above fractal criterion whenever 1/2 < α−1 � 3/2 and, hence,
in particular for the range 3/2 < α < 2 of interest. The corresponding fractal dimension is
7/2 − α and, hence, also lies between 3/2 and 2.

Based on the above results, it is conjectured that the incompleteness of trajectory-based
interpretations for quantum particles corresponds to the existence of states for which the space-
time dependence of the wavefunction, or of its spatial derivative, has a fractal structure.
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6. Conclusions

The incompleteness of trajectory-based interpretations arises for systems with unbounded
Hamiltonian operators. It applies not only to the very simple case of a wavefunction initially
uniform over the interior of a box, but also to a number of examples having finite average
energies and hence which can, in principle, be physically prepared. For quantum particles,
the incompleteness of such interpretations appears to be connected with associated fractal
structures.

Strictly speaking, one should differentiate between the notions of formal and physical
incompleteness. The results of the paper show that trajectory-based interpretations are formally
incomplete, as they do not describe all possible states in the Hilbert space, even though
these states and their (unitary) evolution are well defined. The results further suggest that
such interpretations are physically incomplete, as the states in question include those having
finite average energies and, hence, can plausibly be physically prepared from finite resources.
However, it is open to proponents of such interpretations to argue for physical completeness on
the grounds that even the finite-average-energy counterexamples are unphysical. For example,
noting the discussion in section 3, it would suffice to provide a convincing argument that all
moments of the energy of a physical system must be finite.

In the case of wavefunctions for which P and S are fractals there would appear to be
little chance of overcoming incompleteness, via some supplementary rule that specifies how
to generate the corresponding (presumably fractal) trajectories. In contrast, in the case of
wavefunctions for which the spatial derivative is a fractal, the velocity equation in equation
(15) is well defined and, hence, might be used to specify a set of associated trajectories (e.g.
via ẋ = v in the de Broglie–Bohm interpretation). However, given the nonexistence of a
corresponding continuity equation according to equation (14), it is not clear that an ensemble
of these trajectories can evolve in agreement with the Schrödinger equation in equation (4). It
would be of interest to perform some numerical experiments in this regard.

As previously remarked, the incompleteness result applies to any interpretation that relies
on the continuity and modified Hamilton–Jacobi equations in equation (14) [1–6]. Thus
quantum mechanics goes where these intepretations do not follow, despite their (at least in
principle) duty to do so.
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